MCGET2024 CARBON CAPTURE & STORAGE **CONFERENCE**

CCS AQUIFER STORAGE POTENTIAL IN THE NETHERLANDS; A PLAY INVENTORY IN THE GEODE RESOURCE ATLAS

Harald de Haan, Liza de Groot, Michael Nolten and Kike Beintema

4-7 NOVEMBER 2024 ROTTERDAM, THE NETHERLANDS

TNO

ebn

- Joint project of EBN B.V. and TNO
- Easily accessible web-based GIS environment where play-based exploration data and knowledge is presented for:
	- **hydrocarbon** plays in the Netherlands
	- saline aquifer **CO² storage** in the Dutch offshore
	- **Hydrogen storage** in Zechstein salt in the Netherlands
- Results available to the public free of charge
- Facilitating E&P, CCS companies and research organisations
- Online since November 2021, yearly updates and added plays

1 CENOZOIC - SHALLOW GAS **2 UPPER CRETACEOUS - CHALK 3 LOWER CRETACEOUS 4 JURASSIC 5 TRIASSIC 6 ZECHSTEIN** EXHIBITION **7 ROTLIEGEND 8 CARBONIFEROUS 9 SOURCE ROCKS** E&P **Aquifer CCS** $\widetilde{\mathcal{M}}$

5 T H E A G E G A G E A L E A L E A L E A L E A L E A L E A L E A L E A L E A C H D A C O N C O N C L O N C A C H A L E A L E A L E A C H A C A C L O N C O N C L O N C E A L E A L E A L E A L E A L E A C H D A C L O N C L CONFERENCE $\overline{}$ $5C12024$

GEODE IN A NUTSHELL

ATLAS OF DEEP SUBSURFACE RESOURCES IN THE NETHERLANDS

CO2 STORAGE MAPS

GEODE

- Saline aquifer potential (no depleted fields)
- Theoretical Storage Capacity Density and Permeability Thickness (kh) maps
- Maps to assist in regional risk assessments (seal properties, faults, HC shows, legacy wells)
- General (regional) assumptions; for local studies more site-specific assumptions should be made

Kh (mDm

 $\widetilde{\mathcal{M}}$

KEY DRIVERS CO2 STORAGE

Deliverables GEODE

Seal quality, Faults, Wells, HC shows

 \rightarrow Can the injected CO₂ be monitored & operations be performed safely?

Undiscovered Storage Resources (as defined in the SRMS system,

Q=Capacity (Mt), A= Area aquifer, D=thickness of good reservoir rocks, Φ=porosity, ρCO₂ density of $CO₂$, E_{st} = storage efficiency (<1) (*best practice for the storage of CO² in saline aquifers SACS and CO2STORE projects 2007*)

- Is the aquifer Open, Semi-Closed or Closed?
- Closed aquifer: Pressure constrained
- Open aquifer: Pressure can dissipate. Pore volume constrained
- Closed aquifer:
- \cdot Q = A. D. Φ . (Cr+Cw). ΔP . ρ CO₂
- Regional versus local storage efficiency Calculating local storage efficiency requires dynamic modelling
- No dissolution or precipitation of CO_2 taken into account

 $\widetilde{\mathcal{M}}$

Calculating Capacity

 $Q = A \cdot D \cdot \Phi \cdot \rho CO_2 \cdot E_{st}$

Depth vs density for $CO₂$. At depths greater than 800 m, the average density is 700 kg/m³ (Benson & Cook, 2005).

Q = Storage Capacity A = Area from GEODE maps D = Thickness from GEODE maps Φ = Porosity from GEODE maps Cr = Rock Compressibility constant = $9.1E-5$ (1/bar) Cw = Water Compressibility constant = 3.2E-5 (1/bar) ΔP = Pressure Space 0.035 bar/m (next slide) ρCO2 = Density CO2 constant = 700 kg/m3

Capacity Density = Q/A

Storage Efficiency Factor GEODE (Est) = (Cr+Cw). ΔP

STORAGE VOLUME CALCULATION CLOSED AQUIFER

$Q = A \cdot D \cdot \Phi$. (Cr+Cw). $\Delta P \cdot \rho CO2$

No uncertainties applied yet! → *Qualitative use only (numbers on slides indicative for these assumptions)*

XHIBITION

- CO2 storage will increase the formation pressure
- Stay below pressures that may cause leakage or seismicity
- Indication of fracture gradient from Leak-Off tests (LOT) and Formation Integrity Tests (FIT)
- Geode Pressure Space 0.035 bar/m
- Overpressure reduces Pressure Space

"PRESSURE SPACE" FROM SNS PRESSURE DATABASE (NLOG)

- Hydrostatic grae

 $\widetilde{\mathcal{M}}$

Pressure (bar)

-
-
- south of most Dutch RO gas fields

- NL
-
-
- Porthos project in block P18). Solling can be locally very thick (e.g. L09)

- Marine sands deposited at/close to coastline. along the fringes of the basins
- and Broad Fourteens basin

Input:

- Thickness maps, Porosity maps
- Porosity-Permeability function

PERMEABILITY * THICKNESS (KH) AS PROXY FOR INJECTIVITY

- What is the thickness and quality of the overlying sealing unit?
- CRS map: Likelihood of a working seal for gas (methane or CO₂) or oil

TOP SEAL COMMON SEGMENT RISK (CRS)

Seal Lower Cretaceous Play

- Faults can provide leak paths and/or compartimentalise the aquifer
- Faults mapped by:
- Chaos attribute 3D seismic data
- Dip surface attribute DGM 5 surfaces (nationwide subsurface depth maps)
- Faults from DGM 5
- Faults HIKE database

FAULTS AS A RISK

- Proper abandonment of wells mitigates the risk of leakage
- Isolation of the injection reservoir from the overburden: Proper plug with sufficient length over the caprock with a good cement bond behind the casing
- Older wells with poor record of operations are more difficult to assess. First indicators of risk level:
- Number of wells/well density
- Year of drilling (before/after 1970)
- Presence of a Cement Bond Log (CBL, y/n)
- Accessibility: status of the well (accessible/plugged and abandoned)
- Local studies require more elaborate screening of the isolation in wells and in case of insufficient isolation the possibility of remedial action

LEGACY WELLS

Lower Cretaceous Play

To mature the Theoretical Storage Capacity:

Figure 3 Estimate of Theoretical, effective and practical capacity of depleted gas fields in the Dutch Offshore. Fields are grouped in transmissivity (reservoir quality) classes. Effective capacity currently uses a 0.9 multiplier but will be modified after further work on the underlying processes. Practical capacity represents a case study that strongly depends on regulatory choices and economic factors.

- Clarity on allowed pressures (pressure space)
- Accessibility:
- which regions should be discarded due to restrictions
- which regions should be avoided due to containment risk (geological seal, problematic legacy wells)
- •Economic screening:
- Development scenarios
- Depleted gas fields:

FROM THEORETICAL TO PRACTICAL STORAGE VOLUMES

Bijkerk et al. 2024, Towards practical CO2 storage capacity in Dutch depleted gas fields: reservoir quality and regulatory limits

EXHIBITION 5 T H E A G E G A G E A L E A L E A L E A L E A L E A L E A L E A L E A L E A C H D A C O N C O N C L O N C A C H A L E A L E A L E A C H A C A C L O N C O N C L O N C E A L E A L E A L E A L E A L E A C H D A C L O N C L ∞ TRANSITION CONFERENCE ENERGY **UBAL** \overline{a} EAGE 5 T H $\overline{}$ $GET2024$

- GEODE CO₂ storage maps are a first regional step for evaluating the Dutch CO₂ aquifer storage potential
- Restrictions: regional mapping; local trends not evaluated. Generalized assumptions applied on some parameters, site specific risks to be evaluated by the operator
- •Improvements: incorporate uncertainties, definition pressure space (regulatory guidance), Closed- (semi-) open system definition (expected pressure behaviour definition of hydraulic units)
- Rotliegend, Triassic and Lower Cretaceous aquifers in the Netherlands show significant CO2 storage potential. Detailed studies are needed to mature opportunities. A challenge is the accessibility of parts of Dutch North Sea in the future.

Results available @

 $\widetilde{\mathcal{M}}$

ACKNOWLEDGEMENTS **GEODE staff**

TNO

THANK YOU FOR YOUR ATTENTION !

S. Atkins

- R. Bouroullec
- R. Dalman
- J. Foeken
- S. Nelskamp
- S. Peeters
- M. van Unen
- J. ten Veen

ebn

- A. van den Berg van Saparoea
- E. Boter
- S. Dieters
- B. van der Es
- D. den Hartog Jager
- S. Korevaar
- M. Kortekaas
- M. Nolten
- M. Swart
- E. Wiarda

www.geodeatlas.nl

 $\widetilde{\mathcal{M}}$